QTL for high-dose ethanol actions on Chr14 at D14Mit1 (5.65 Mbp , Build 37)
Description:
high-dose ethanol actions spans 0.00 - 30.65 Mbp (NCBI Build 37) on Chr14. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
Authors:
Erwin VG, Markel PD, Johnson TE, Gehle VM, Jones BC
QTL for METH responses for chewing on Chr14 at D14Mit54 (23.48 Mbp , Build 37)
Description:
METH responses for chewing spans 0.00 - 48.48 Mbp (NCBI Build 37) on Chr14. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
QTL for METH responses for body temperature on Chr14 at Glud (26.89 Mbp , Build 37)
Description:
METH responses for body temperature spans 1.89 - 51.89 Mbp (NCBI Build 37) on Chr14. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
QTL for METH responses for home cage activity on Chr14 at Mtv11 (27.12 Mbp , Build 37)
Description:
METH responses for home cage activity spans 2.12 - 52.12 Mbp (NCBI Build 37) on Chr14. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
QTL for METH responses for home cage activity on Chr14 at Ms15-7 (28.18 Mbp , Build 37)
Description:
METH responses for home cage activity spans 3.18 - 53.18 Mbp (NCBI Build 37) on Chr14. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
QTL associated with insulin dependent diabetes susceptibility 8. This interval was obtained by using a fixed interval width of 25 Mbp around the peak marker (21656627)
QTL associated with modifier of ocular retardation 2. This interval was obtained by using a fixed interval width of 25 Mbp around the peak marker (25745310)
QTL associated with resistance to thymic deletion 3. This interval was obtained by using a fixed interval width of 25 Mbp around the peak marker (13403047)
Authors:
Liston A, Lesage S, Gray DH, O\'Reilly LA, Strasser A, Fahrer AM, Boyd RL, Wilson J, Baxter AG, Gallo EM, Crabtree GR, Peng K, Wilson SR, Goodnow CC
QTL associated with white blood cell quantitative locus 6. This interval was obtained by using a fixed interval width of 25 Mbp around the peak marker (17356225)
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
Analysis using RNA-seq of FACS-purified oligodendrocytes revealed a large cohort of morphine-regulated genes. In addition, to investigate cell-type-specific opioid responses, we performed single-cell RNA sequencing (scRNA-seq) of the nucleus accumbens of mice following acute morphine treatment. Differential expression analysis uncovered unique morphine-dependent transcriptional responses by oligodendrocytes and astrocytes.
Authors:
Denis Avey, Sumithra Sankararaman, Aldrin K Y Yim, Ruteja Barve, Jeffrey Milbrandt, Robi D Mitra
Differential gene expression in nucleus accumbens somatostatin interneurons_cocaine_mice_logFC
Description:
To characterize transcriptional alterations that cocaine induces in these cells, we perform cell type-specific RNA-sequencing on FACS-isolated nuclei of somatostatin interneurons and identified 1100 DETs enriched for processes related to neural plasticity. To profile the entire (non poly-A selected) transcriptome of NAc somatostatin interneurons, we generated a transgenic reporter line (SST-TLG498 mice) to label the nuclei of these cells with a modified form of EGFP that is retained in the nuclear membrane (EGFP-F)22, enabling their isolation from NAc dissections using FACS. We succeeded in FACS-isolating nuclei suitable for RNA-sequencing from individual SST-TLG498 mice. We proceeded with differential expression analysis of the RNA-sequencing data to identify differentially expressed transcripts (DETs) in NAc somatostatin interneurons in response to repeated cocaine exposure: 778 transcripts were upregulated by cocaine and 322 were downregulated.
Authors:
Efrain A Ribeiro, Marine Salery, Joseph R Scarpa, Erin S Calipari, Peter J Hamilton, Stacy M Ku, Hope Kronman, Immanuel Purushothaman, Barbara Juarez, Mitra Heshmati, Marie Doyle, Casey Lardner, Dominicka Burek, Ana Strat, Stephen Pirpinias, Ezekiell Mouzon, Ming-Hu Han, Rachael L Neve, Rosemary C Bagot, Andrew Kasarskis, Ja Wook Koo, Eric J Nestler
DEG PFC in adolescent D2 mice 24hr post treatment_pvalue
Description:
DBA/2J males and females (n = 24/sex) were orally dosed with 4 g/kg ethanol (25% w/v in water by gavage) or water intermittently (2 days on/2 days off) on PND 29, 30, 33, 34, 37, 38, 41, and 42. Tissue was collected for gene expression studies at PND 43 (n = 22) and PND 66 (n = 19). Behaviorally naïve tissue from the PFC was collected 24 h (at PND 43) and 3 weeks (at PND 66) after the last ethanol binge (dose). Total RNA was analyzed for gene-level expression differences using Mouse Transcriptome Arrays v1.0. Two complementary analyses were conducted to interrogate differential gene expression at each age. Gene Ontology over-representation analysis identified six categories involved in oligodendrocyte development and myelination as the primary Biological Processes altered by adolescent binge ethanol. For transcript IDs significant for the interaction between sex and adolescent treatment, Gene Ontology analysis only identified two over-represented cellular components: ER chaperone component and smooth ER. When comparing gene expression between adolescent males vs. females, most of the differentially expressed genes either resided on the Y chromosome (Ddx3y, Eif2s3y, Kdm5d, Uty), or are known to escape X-inactivation (Ddx3x, Eif2s3x, Kdm5c, Kdm6a) in mice (Yang et al., 2010). Over-represented Gene Ontology categories (Supplementary Table 2) reflect their processes, such as histone demethylase activity, angiotensin catabolic processes in blood, cell adhesion and regulation of gap junction assembly. Genes in this geneset are all significantly altered as a main effect of treatment, sex, or the interaction between treatment and sex (p < 0.01).
Authors:
Jennifer T Wolstenholme, Tariq Mahmood, Guy M Harris, Shahroze Abbas, Michael F Miles
DEG PFC in adolescent D2 mice 24hr post treatment_logFC
Description:
DBA/2J males and females (n = 24/sex) were orally dosed with 4 g/kg ethanol (25% w/v in water by gavage) or water intermittently (2 days on/2 days off) on PND 29, 30, 33, 34, 37, 38, 41, and 42. Tissue was collected for gene expression studies at PND 43 (n = 22) and PND 66 (n = 19). Behaviorally naïve tissue from the PFC was collected 24 h (at PND 43) and 3 weeks (at PND 66) after the last ethanol binge (dose). Total RNA was analyzed for gene-level expression differences using Mouse Transcriptome Arrays v1.0. Two complementary analyses were conducted to interrogate differential gene expression at each age. Gene Ontology over-representation analysis identified six categories involved in oligodendrocyte development and myelination as the primary Biological Processes altered by adolescent binge ethanol. For transcript IDs significant for the interaction between sex and adolescent treatment, Gene Ontology analysis only identified two over-represented cellular components: ER chaperone component and smooth ER. When comparing gene expression between adolescent males vs. females, most of the differentially expressed genes either resided on the Y chromosome (Ddx3y, Eif2s3y, Kdm5d, Uty), or are known to escape X-inactivation (Ddx3x, Eif2s3x, Kdm5c, Kdm6a) in mice (Yang et al., 2010). Over-represented Gene Ontology categories (Supplementary Table 2) reflect their processes, such as histone demethylase activity, angiotensin catabolic processes in blood, cell adhesion and regulation of gap junction assembly. Genes in this geneset are all significantly altered as a main effect of treatment, sex, or the interaction between treatment and sex (p < 0.01).
Authors:
Jennifer T Wolstenholme, Tariq Mahmood, Guy M Harris, Shahroze Abbas, Michael F Miles
Adolescent D2 transcripts sig. altered in PFC using S-score analysis at FDR < 0.05 (EtOH vs control)
Description:
DBA/2J males and females (n = 24/sex) were orally dosed with 4 g/kg ethanol (25% w/v in water by gavage) or water intermittently (2 days on/2 days off) on PND 29, 30, 33, 34, 37, 38, 41, and 42. Tissue was collected for gene expression studies at PND 43 (n = 22) and PND 66 (n = 19). Behaviorally naïve tissue from the PFC was collected 24 h (at PND 43) and 3 weeks (at PND 66) after the last ethanol binge (dose). Total RNA was analyzed for gene-level expression differences using Mouse Transcriptome Arrays v1.0. We performed an analysis using the S-score probe-level algorithm which we have previously shown to have increased sensitivity for differential expression analysis (Zhang et al., 2002; Kennedy et al., 2006). For this analysis, data was collapsed over sex to increase the power to detect differences between ethanol treatment versus controls and to focus on lasting differences following binge ethanol. To assess genes that were persistently regulated long-term following adolescent binge ethanol, we intersected the S-score analysis gene list significantly altered by ethanol in adolescents with the list obtained from adults.
Authors:
Jennifer T Wolstenholme, Tariq Mahmood, Guy M Harris, Shahroze Abbas, Michael F Miles
DEG female mouse forebrain 3-tri morphine vs saline_pvalue
Description:
To examine forebrain transcriptomic changes that might elucidate mechanisms of withdrawal, delayed development, and any long-term behavior changes, we generated transcriptomic signatures following our “3-trimester” exposure model (3-Tri). In addition, we also examined transcriptomes from animals that received opioids only during the gestational period (PND1) or only during the last trimester from PND 1–14 (PND 14). We sought to determine whether transcriptomic signatures vary based on the window of exposure, perhaps contributing to the discrepancies in the literature regarding acute and long-term outcomes. Brains were dissected from PND 1 pups 6 h after discovery. Brains were dissected from post-natal exposure only (PND 14) or 3-trimester exposure (3-tri) 6 h after the last morphine or saline injection. The number of animals per group was similar (N = 5–7 animals, male and female C57Bl/6NTac mice), and the quality controls, library construction and sequence parameters were also identical across all groups. Libraries were sequenced on a NovaSeq 6000 at a depth of 30 million total reads/sample using paired-end sequencing of 150 base pairs (PE150), to a depth of 30 million total reads/sample. Reads were then mapped to the mouse reference genome (Mus Musculus, GRCm38/mm10) using HISAT2 (version 2.2.1), and duplicated fragments were removed using Picard MarkDuplicates. Differential expression analysis between two conditions (e.g., Morphine and Saline) was performed in R (version 4.1.1) with DESeq2 (v1.32.0) package. Genes were assigned by the authors as differentially expressed if the (adjusted) (nominal) p-value < 0.05. All genes/scores are presented here.
Authors:
Amelia D Dunn, Shivon A Robinson, Chiso Nwokafor, Molly Estill, Julia Ferrante, Li Shen, Crystal O Lemchi, Jordi Creus-Muncunill, Angie Ramirez, Juliet Mengaziol, Julia K Brynildsen, Mark Leggas, Jamie Horn, Michelle E Ehrlich, Julie A Blendy
DEG female mouse forebrain PND1 morphine vs saline_pvalue
Description:
To examine forebrain transcriptomic changes that might elucidate mechanisms of withdrawal, delayed development, and any long-term behavior changes, we generated transcriptomic signatures following our “3-trimester” exposure model (3-Tri). In addition, we also examined transcriptomes from animals that received opioids only during the gestational period (PND1) or only during the last trimester from PND 1–14 (PND 14). We sought to determine whether transcriptomic signatures vary based on the window of exposure, perhaps contributing to the discrepancies in the literature regarding acute and long-term outcomes. Brains were dissected from PND 1 pups 6 h after discovery. Brains were dissected from post-natal exposure only (PND 14) or 3-trimester exposure (3-tri) 6 h after the last morphine or saline injection. The number of animals per group was similar (N = 5–7 animals, male and female C57Bl/6NTac mice), and the quality controls, library construction and sequence parameters were also identical across all groups. Libraries were sequenced on a NovaSeq 6000 at a depth of 30 million total reads/sample using paired-end sequencing of 150 base pairs (PE150), to a depth of 30 million total reads/sample. Reads were then mapped to the mouse reference genome (Mus Musculus, GRCm38/mm10) using HISAT2 (version 2.2.1), and duplicated fragments were removed using Picard MarkDuplicates. Differential expression analysis between two conditions (e.g., Morphine and Saline) was performed in R (version 4.1.1) with DESeq2 (v1.32.0) package. Genes were assigned by the authors as differentially expressed if the (adjusted) (nominal) p-value < 0.05. All genes/scores are presented here.
Authors:
Amelia D Dunn, Shivon A Robinson, Chiso Nwokafor, Molly Estill, Julia Ferrante, Li Shen, Crystal O Lemchi, Jordi Creus-Muncunill, Angie Ramirez, Juliet Mengaziol, Julia K Brynildsen, Mark Leggas, Jamie Horn, Michelle E Ehrlich, Julie A Blendy
DEG male mouse forebrain 3-tri morphine vs saline_pvalue
Description:
To examine forebrain transcriptomic changes that might elucidate mechanisms of withdrawal, delayed development, and any long-term behavior changes, we generated transcriptomic signatures following our “3-trimester” exposure model (3-Tri). In addition, we also examined transcriptomes from animals that received opioids only during the gestational period (PND1) or only during the last trimester from PND 1–14 (PND 14). We sought to determine whether transcriptomic signatures vary based on the window of exposure, perhaps contributing to the discrepancies in the literature regarding acute and long-term outcomes. Brains were dissected from PND 1 pups 6 h after discovery. Brains were dissected from post-natal exposure only (PND 14) or 3-trimester exposure (3-tri) 6 h after the last morphine or saline injection. The number of animals per group was similar (N = 5–7 animals, male and female C57Bl/6NTac mice), and the quality controls, library construction and sequence parameters were also identical across all groups. Libraries were sequenced on a NovaSeq 6000 at a depth of 30 million total reads/sample using paired-end sequencing of 150 base pairs (PE150), to a depth of 30 million total reads/sample. Reads were then mapped to the mouse reference genome (Mus Musculus, GRCm38/mm10) using HISAT2 (version 2.2.1), and duplicated fragments were removed using Picard MarkDuplicates. Differential expression analysis between two conditions (e.g., Morphine and Saline) was performed in R (version 4.1.1) with DESeq2 (v1.32.0) package. Genes were assigned by the authors as differentially expressed if the (adjusted) (nominal) p-value < 0.05. All genes/scores are presented here.
Authors:
Amelia D Dunn, Shivon A Robinson, Chiso Nwokafor, Molly Estill, Julia Ferrante, Li Shen, Crystal O Lemchi, Jordi Creus-Muncunill, Angie Ramirez, Juliet Mengaziol, Julia K Brynildsen, Mark Leggas, Jamie Horn, Michelle E Ehrlich, Julie A Blendy
Add Selected GeneSets to Project(s)
Warning: You are not signed in. Adding these genesets to a project will create a guest account for you.
Guest accounts are temporary, and will be removed within 24 hours of creation. Guest accounts can be registered as full accounts, but you cannot associate a guest account with an existing account.
If you already have an account, you should sign into that account before proceeding.