The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
Small intestine transcriptome changes in morphine treated mice. Eight-week-old, pathogen free, C57BL/6 male mice were used for this study (morphine n = 5, control n = 5). The animals were anesthetized using isoflurane (Pivetal®) and a 25mg slow-release morphine pellet or placebo pellet was implanted subcutaneously. Treatment lasted 16 hours. mRNA was purified from total RNA from using poly T-magnetic beads and strand specific library was constructed by using NEBNext Ultra RNA library prep kit. After quality control, the libraries were sequenced paired end by using Illumina sequencers (Illumina HiSeq 4000) for a read length of 150 base pairs. Clean reads were mapped to the mouse transcriptome using “STAR” software. The subsequent differential gene expression analysis was performed using DESeq2 R package (log2 (Fold change) > 1, P adj<0.05).
Average rotarod training latency Chr# 12 rs13481614 (102385663) with right flanking marker rs33846822 (30605487) and left marker rs29187760 (115166913). This was mapped in 300 + (b6x129)F2 mice.
QTL Associated with Hormone level. On Chromosome 2 with a LOD score= 5.39, p-value =. From a(n) of
Authors:
Ogino T, Moralejo DH, Kose H, Yamada T, Matsumoto K
Add Selected GeneSets to Project(s)
Warning: You are not signed in. Adding these genesets to a project will create a guest account for you.
Guest accounts are temporary, and will be removed within 24 hours of creation. Guest accounts can be registered as full accounts, but you cannot associate a guest account with an existing account.
If you already have an account, you should sign into that account before proceeding.