Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol amygdala gene expression in females q-value
Description:
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
Small intestine transcriptome changes in morphine treated mice without microbiome (Abx+morphine (AM)) (n = 7) vs morphine treated mice (n = 5). Eight-week-old, pathogen free, C57BL/6 male mice were used for this study. For depletion of the gut microbiota, a pan-antibiotics+antifungal cocktail [vancomycin 32 (mg/kg), bacitracin (80mg/kg), metronidazole (80mg/kg), neomycin (320mg/kg), and pimaricin (0.192mg/kg)] was prepared every day in drinking water. The cocktail was administered by oral gavage for 7 days as described previously. The animals were anesthetized using isoflurane (Pivetal®) and a 25mg slow-release morphine pellet or placebo pellet was implanted subcutaneously. Treatment lasted 16 hours. mRNA was purified from total RNA from using poly T-magnetic beads and strand specific library was constructed by using NEBNext Ultra RNA library prep kit. After quality control, the libraries were sequenced paired end by using Illumina sequencers (Illumina NovaSeq 6000) for a read length of 150 base pairs. Clean reads were mapped to the mouse transcriptome using “STAR” software. The subsequent differential gene expression analysis was performed using DESeq2 R package (log2 (Fold change) > 1, P adj<0.05).
Whole Brain Gene Expression Correlates for LD_PCT_LIGHT_TIME measured in BXD RI Females obtained using INIA Brain mRNA M430 (Jun06) RMA. The LD_PCT_LIGHT_TIME measures Light-Dark Box Percentage time in light under the domain Basal Behavior. The correlates were thresholded at a p-value of less than 0.001.
Authors:
Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Lariviere WR, Matthews DB, Mittleman G, Goldowitz D, Chesler EJ
alcohol preference 7 spans 13.47 - 63.47 Mbp (NCBI Build 37) on Chr7. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
Authors:
Bachmanov AA, Reed DR, Li X, Li S, Beauchamp GK, Tordoff MG
Genes associated with Homo sapiens that interact with the MeSH term '(6-(4-(2-piperidin-1-ylethoxy)phenyl))-3-pyridin-4-ylpyrazolo(1,5-a)pyrimidine' (C516138). Incorporates data from 3 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'Copper Sulfate' (D019327). Incorporates data from 72 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'butyraldehyde' (C018475). Incorporates data from 7 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'Parathion' (D010278). Incorporates data from 2 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term '4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide' (C459179). Incorporates data from 9 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'terbufos' (C012568). Incorporates data from 7 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'Selenium Compounds' (D018036). Incorporates data from 1386 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'Sodium Selenite' (D018038). Incorporates data from 10 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'Valproic Acid' (D014635). Incorporates data from 1238 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'Nickel' (D009532). Incorporates data from 166 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Authors:
None
Add Selected GeneSets to Project(s)
Warning: You are not signed in. Adding these genesets to a project will create a guest account for you.
Guest accounts are temporary, and will be removed within 24 hours of creation. Guest accounts can be registered as full accounts, but you cannot associate a guest account with an existing account.
If you already have an account, you should sign into that account before proceeding.