QTL for cocaine induced activation on Chr17 at D17MIT164 (6.59 Mbp , Build 37)
Description:
cocaine induced activation spans 0.00 - 31.59 Mbp (NCBI Build 37) on Chr17. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
QTL for ethanol metabolism rate on Chr17 at NA (9.40 Mbp , Build 37)
Description:
ethanol metabolism rate spans 0.00 - 34.40 Mbp (NCBI Build 37) on Chr17. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
Authors:
Grisel JE, Metten P, Wenger CD, Merrill CM, Crabbe JC
QTL for METH responses for body temperature on Chr17 at Zfp40 (17.81 Mbp , Build 37)
Description:
METH responses for body temperature spans 0.00 - 42.81 Mbp (NCBI Build 37) on Chr17. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
QTL for ethanol conditioned taste aversion on Chr17 at D17Ncvs39 (23.83 Mbp , Build 37)
Description:
ethanol conditioned taste aversion spans 0.00 - 48.83 Mbp (NCBI Build 37) on Chr17. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
Ethanol Induced Ataxia Chr#17 rs3672987(33247165) with right flanking marker rs4136382(3388912) and left marker rs3715723(58810428). This was mapped in 300 + (b6x129)F2 mice.
Transcriptomic analysis of gene expression in the nucleus accumbens somatostatin interneurons of male 8�12-week-old Sst-Cre mice or Sst-Cre x TLG498 (SST-TLG498) mice following repeated cocaine intake. Expression was measured via RNA-seq. Values presented are p-values. Data taken from Supplementary Data 1. Data can be accessed at GEO with accession number: GSE116484.A7
Authors:
Efrain A Ribeiro, Marine Salery, Joseph R Scarpa, Erin S Calipari, Peter J Hamilton, Stacy M Ku, Hope Kronman, Immanuel Purushothaman, Barbara Juarez, Mitra Heshmati, Marie Doyle, Casey Lardner, Dominicka Burek, Ana Strat, Stephen Pirpinias, Ezekiell Mouzon, Ming-Hu Han, Rachael L Neve, Rosemary C Bagot, Andrew Kasarskis, Ja Wook Koo, Eric J Nestler
Genes identified as expressed lower (down) in the AJ strain than in the CAST strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed lower (down) in the AJ strain than in the CAST strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed higher (up) in the AJ strain than in the AJ strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed higher (up) in the AJ strain than in the NOD strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed higher (up) in the AJ strain than in the NZO strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed higher (up) in the AJ strain than in the S129 strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed lower (down) in the AJ strain than in the CAST strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed lower (down) in the AJ strain than in the CAST strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed lower (down) in the AJ strain than in the CAST strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol amygdala gene expression in females q-value
Description:
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol prefrontal cortex gene expression in females logFC
Description:
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Add Selected GeneSets to Project(s)
Warning: You are not signed in. Adding these genesets to a project will create a guest account for you.
Guest accounts are temporary, and will be removed within 24 hours of creation. Guest accounts can be registered as full accounts, but you cannot associate a guest account with an existing account.
If you already have an account, you should sign into that account before proceeding.