Whole Brain Gene Expression Correlates for HARGREAVES_MEANBOTH measured in BXD RI Males obtained using INIA Brain mRNA M430 (Jun06) RMA. The HARGREAVES_MEANBOTH measures Thermal Nociception Hargreaves' Test under the domain Pain. The correlates were thresholded at a p-value of less than 0.001.
Authors:
Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Lariviere WR, Matthews DB, Mittleman G, Goldowitz D, Chesler EJ
QTL for METH responses for climbing on Chr4 at Mltr3 (34.50 Mbp , Build 37)
Description:
METH responses for climbing spans 9.50 - 59.50 Mbp (NCBI Build 37) on Chr4. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
QTL for METH responses for body temperature on Chr4 at D4Nds8 (40.90 Mbp , Build 37)
Description:
METH responses for body temperature spans 15.90 - 65.90 Mbp (NCBI Build 37) on Chr4. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
QTL for METH responses for chewing on Chr4 at Lyb4 (46.47 Mbp , Build 37)
Description:
METH responses for chewing spans 21.47 - 71.47 Mbp (NCBI Build 37) on Chr4. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
Average rotarod training latency Chr# 4 rs13477617(26886337) with right flanking marker rs3660863(7127435) and left marker rs3684104 (38269953). This was mapped in 300 + (b6x129)F2 mice.
640 Diversity Outbred (DO) mice were exposed to 4 weeks of intermittent ethanol access (IEA) via 3-bottle choice (H20, 15% EtOH, 30% EtOH). 200 prefrontal cortex (PFC) samples were sent for RNA-seq. After QC and GBRS alignment, Pearson correlations were calculated for all genes with variant-stabilized transcript counts >1 and whole study mean ethanol consumption. This gene set provides the list of genes for which FDR-corrected p-values < 0.05 and their Pearson correlation scores.
640 Diversity Outbred (DO) mice were exposed to 4 weeks of intermittent ethanol access (IEA) via 3-bottle choice (H20, 15% EtOH, 30% EtOH). 200 prefrontal cortex (PFC) samples were sent for RNA-seq. After QC and GBRS alignment, Pearson correlations were calculated for all genes with variant-stabilized transcript counts >1 and week four mean ethanol consumption. This gene set provides the list of genes for which FDR-corrected p-values < 0.05 and their Pearson correlation scores.
640 Diversity Outbred (DO) mice were exposed to 4 weeks of intermittent ethanol access (IEA) via 3-bottle choice (H20, 15% EtOH, 30% EtOH). 200 prefrontal cortex (PFC) samples were sent for RNA-seq. After QC and GBRS alignment, Pearson correlations were calculated for all genes with variant-stabilized transcript counts >1 and whole study mean ethanol preference over water. This gene set provides the list of genes for which FDR-corrected p-values < 0.05 and their Pearson correlation scores.
640 Diversity Outbred (DO) mice were exposed to 4 weeks of intermittent ethanol access (IEA) via 3-bottle choice (H20, 15% EtOH, 30% EtOH). 200 prefrontal cortex (PFC) samples were sent for RNA-seq. After QC and GBRS alignment, Pearson correlations were calculated for all genes with variant-stabilized transcript counts >1 and week four mean ethanol preference over water. This gene set provides the list of genes for which FDR-corrected p-values < 0.05 and their Pearson correlation scores.
Genes identified as expressed lower (down) in the AJ strain than in the NOD strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed lower (down) in the AJ strain than in the NOD strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed lower (down) in the AJ strain than in the NZO strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed lower (down) in the AJ strain than in the NOD strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed higher (up) in the AJ strain than in the S129 strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed higher (up) in the AJ strain than in the S129 strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Genes identified as expressed lower (down) in the AJ strain than in the NOD strain. Differentially expressed genes had a Q-value < 0.05 following the Benjamini-Hochberg methodology for false discovery rates in the limma+voom pipeline within edgeR. Q-value is reported from the topTable function.
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol prefrontal cortex gene expression in females logFC
Description:
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Gene expression in female mice PFC associated with chronic alcohol exposure
Description:
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol prefrontal cortex gene expression in males logFC
Description:
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol hypothalamus gene expression in females logFC
Description:
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Alcohol hypothalamus gene expression in males logFC
Description:
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge- neous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio- markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell- cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti- gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis- tic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a bio- logical signature of alcohol dependence that can discriminate between CIE and Air subjects.
Authors:
Laura B Ferguson, Amanda J Roberts, R Dayne Mayfield, Robert O Messing
Add Selected GeneSets to Project(s)
Warning: You are not signed in. Adding these genesets to a project will create a guest account for you.
Guest accounts are temporary, and will be removed within 24 hours of creation. Guest accounts can be registered as full accounts, but you cannot associate a guest account with an existing account.
If you already have an account, you should sign into that account before proceeding.