Average rotarod training latency Chr# 4 rs13477617(26886337) with right flanking marker rs3660863(7127435) and left marker rs3684104 (38269953). This was mapped in 300 + (b6x129)F2 mice.
Differential Expression of Emotional and Physical Stress(Fold Change >1) in Ventral Tegmental Area using eight week-old male C57BL/6J. Statistics reported as fold change.
Authors:
Warren BL, Vialou VF, Alcantara LF, Wright KN, Feng J, Kennedy PJ, Laplant Q, Shen L, Nestler EJ
Gene Ontology (GO) gene set. This set contains genes that have been annotated to the GO term "cellular anatomical entity", which is defined as "A part of a cellular organism that is either an immaterial entity or a material entity with granularity above the level of a protein complex but below that of an anatomical system. Or, a substance produced by a cellular organism with granularity above the level of a protein complex." This gene set was automatically constructed using annotation and ontology data provided by GO and only includes annotations with experimental and curatorial evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC). The transitive closure of this term is taken into account using is_a and part_of relationships. For more information: The Gene Ontology Consortium (GOC), http://geneontology.org This gene set was generated using the GeneWeaver GO loader v. 0.2.12.
Authors:
M Ashburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel-Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, G Sherlock
Gene Ontology (GO) gene set. This set contains genes that have been annotated to the GO term "intracellular", which is defined as "The living contents of a cell; the matter contained within (but not including) the plasma membrane, usually taken to exclude large vacuoles and masses of secretory or ingested material. In eukaryotes it includes the nucleus and cytoplasm." This gene set was automatically constructed using annotation and ontology data provided by GO and only includes annotations with experimental and curatorial evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC). The transitive closure of this term is taken into account using is_a and part_of relationships. For more information: The Gene Ontology Consortium (GOC), http://geneontology.org This gene set was generated using the GeneWeaver GO loader v. 0.2.12.
Authors:
M Ashburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel-Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, G Sherlock
Gene Ontology (GO) gene set. This set contains genes that have been annotated to the GO term "intracellular organelle", which is defined as "Organized structure of distinctive morphology and function, occurring within the cell. Includes the nucleus, mitochondria, plastids, vacuoles, vesicles, ribosomes and the cytoskeleton. Excludes the plasma membrane." This gene set was automatically constructed using annotation and ontology data provided by GO and only includes annotations with experimental and curatorial evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC). The transitive closure of this term is taken into account using is_a and part_of relationships. For more information: The Gene Ontology Consortium (GOC), http://geneontology.org This gene set was generated using the GeneWeaver GO loader v. 0.2.12.
Authors:
M Ashburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel-Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, G Sherlock
Gene Ontology (GO) gene set. This set contains genes that have been annotated to the GO term "membrane-bounded organelle", which is defined as "Organized structure of distinctive morphology and function, bounded by a single or double lipid bilayer membrane. Includes the nucleus, mitochondria, plastids, vacuoles, and vesicles. Excludes the plasma membrane." This gene set was automatically constructed using annotation and ontology data provided by GO and only includes annotations with experimental and curatorial evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC). The transitive closure of this term is taken into account using is_a and part_of relationships. For more information: The Gene Ontology Consortium (GOC), http://geneontology.org This gene set was generated using the GeneWeaver GO loader v. 0.2.12.
Authors:
M Ashburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel-Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, G Sherlock
Gene Ontology (GO) gene set. This set contains genes that have been annotated to the GO term "organelle", which is defined as "Organized structure of distinctive morphology and function. Includes the nucleus, mitochondria, plastids, vacuoles, vesicles, ribosomes and the cytoskeleton, and prokaryotic structures such as anammoxosomes and pirellulosomes. Excludes the plasma membrane." This gene set was automatically constructed using annotation and ontology data provided by GO and only includes annotations with experimental and curatorial evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC). The transitive closure of this term is taken into account using is_a and part_of relationships. For more information: The Gene Ontology Consortium (GOC), http://geneontology.org This gene set was generated using the GeneWeaver GO loader v. 0.2.12.
Authors:
M Ashburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel-Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, G Sherlock
Gene Ontology (GO) gene set. This set contains genes that have been annotated to the GO term "cellular_component", which is defined as "A location, relative to cellular compartments and structures, occupied by a macromolecular machine when it carries out a molecular function. There are two ways in which the gene ontology describes locations of gene products: (1) relative to cellular structures (e.g., cytoplasmic side of plasma membrane) or compartments (e.g., mitochondrion), and (2) the stable macromolecular complexes of which they are parts (e.g., the ribosome)." This gene set was automatically constructed using annotation and ontology data provided by GO and only includes annotations with experimental and curatorial evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC). The transitive closure of this term is taken into account using is_a and part_of relationships. For more information: The Gene Ontology Consortium (GOC), http://geneontology.org This gene set was generated using the GeneWeaver GO loader v. 0.2.12.
Authors:
M Ashburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel-Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, G Sherlock
Gene Ontology (GO) gene set. This set contains genes that have been annotated to the GO term "nucleus", which is defined as "A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent." This gene set was automatically constructed using annotation and ontology data provided by GO and only includes annotations with experimental and curatorial evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC). The transitive closure of this term is taken into account using is_a and part_of relationships. For more information: The Gene Ontology Consortium (GOC), http://geneontology.org This gene set was generated using the GeneWeaver GO loader v. 0.2.12.
Authors:
M Ashburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel-Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, G Sherlock
Gene Ontology (GO) gene set. This set contains genes that have been annotated to the GO term "intracellular membrane-bounded organelle", which is defined as "Organized structure of distinctive morphology and function, bounded by a single or double lipid bilayer membrane and occurring within the cell. Includes the nucleus, mitochondria, plastids, vacuoles, and vesicles. Excludes the plasma membrane." This gene set was automatically constructed using annotation and ontology data provided by GO and only includes annotations with experimental and curatorial evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC). The transitive closure of this term is taken into account using is_a and part_of relationships. For more information: The Gene Ontology Consortium (GOC), http://geneontology.org This gene set was generated using the GeneWeaver GO loader v. 0.2.12.
Authors:
M Ashburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel-Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, G Sherlock
Transcriptomic analysis of gene expression in the nucleus accumbens somatostatin interneurons of male 8�12-week-old Sst-Cre mice or Sst-Cre x TLG498 (SST-TLG498) mice following repeated cocaine intake. Expression was measured via RNA-seq. Values presented are p-values. Data taken from Supplementary Data 1. Data can be accessed at GEO with accession number: GSE116484.A7
Authors:
Efrain A Ribeiro, Marine Salery, Joseph R Scarpa, Erin S Calipari, Peter J Hamilton, Stacy M Ku, Hope Kronman, Immanuel Purushothaman, Barbara Juarez, Mitra Heshmati, Marie Doyle, Casey Lardner, Dominicka Burek, Ana Strat, Stephen Pirpinias, Ezekiell Mouzon, Ming-Hu Han, Rachael L Neve, Rosemary C Bagot, Andrew Kasarskis, Ja Wook Koo, Eric J Nestler
Alcohol transcriptome changes in mice microglia total homogenate log2FC
Description:
Microglia are fundamentally important immune cells within the central nervous system (CNS) that respond to environmental challenges to maintain normal physiological processes. Alterations in steady-state cellular function and over-activation of microglia can facilitate the initiation and progression of neuropathological conditions such as Alzheimer’s disease, Multiple Sclerosis, and Major Depressive Disorder. Alcohol consumption disrupts signaling pathways including both innate and adaptive immune responses that are necessary for CNS homeostasis. Coordinate expression of these genes is not ascertained from an admixture of CNS cell-types, underscoring the importance of examining isolated cellular populations to reveal systematic gene expression changes arising from mature microglia. Unbiased RNA-Seq profiling was used to identify gene expression changes in isolated prefrontal cortical microglia in response to recurring bouts of voluntary alcohol drinking behavior. The voluntary ethanol paradigm utilizes long-term consumption ethanol that results in escalated alcohol intake and altered cortical plasticity that is seen in humans. Gene coexpression analysis identified a coordinately regulated group of genes, unique to microglia, that collectively are associated with alcohol consumption. Genes within this group are involved in toll-like receptor signaling and transforming growth factor beta signaling. Network connectivity of this group identified Siglech as a putative hub gene and highlighted the potential importance of proteases in the microglial response to chronic ethanol. In conclusion, we identified a distinctive microglial gene expression signature for neuroimmune responses related to alcohol consumption that provides valuable insight into microglia-specific changes underlying the development of substance abuse, and possibly other CNS disorders.
Authors:
Gizelle M McCarthy, Sean P Farris, Yuri A Blednov, R Adron Harris, R Dayne Mayfield
Gene expression correlation with morphine response in BXD mice
Description:
Dataset represents the correlation between gene expression in prefrontal cortex from GeneNetwork dataset DOD BXD PFC GWI CTL RNA-seq ComB (Dec19) TPM Log2 with GeneNetwork dataset for BXD mice labeled as: Central nervous system, pharmacology, behavior: Morphine response (50 mg/kg ip), locomotion (open field) from 45-60 min after injection in an activity chamber for males [cm] with peak at Chr10: 5.636905. Data shown here are p-adjusted values < 0.05.
Differential gene expression in nucleus accumbens somatostatin interneurons_cocaine_mice_logFC
Description:
To characterize transcriptional alterations that cocaine induces in these cells, we perform cell type-specific RNA-sequencing on FACS-isolated nuclei of somatostatin interneurons and identified 1100 DETs enriched for processes related to neural plasticity. To profile the entire (non poly-A selected) transcriptome of NAc somatostatin interneurons, we generated a transgenic reporter line (SST-TLG498 mice) to label the nuclei of these cells with a modified form of EGFP that is retained in the nuclear membrane (EGFP-F)22, enabling their isolation from NAc dissections using FACS. We succeeded in FACS-isolating nuclei suitable for RNA-sequencing from individual SST-TLG498 mice. We proceeded with differential expression analysis of the RNA-sequencing data to identify differentially expressed transcripts (DETs) in NAc somatostatin interneurons in response to repeated cocaine exposure: 778 transcripts were upregulated by cocaine and 322 were downregulated.
Authors:
Efrain A Ribeiro, Marine Salery, Joseph R Scarpa, Erin S Calipari, Peter J Hamilton, Stacy M Ku, Hope Kronman, Immanuel Purushothaman, Barbara Juarez, Mitra Heshmati, Marie Doyle, Casey Lardner, Dominicka Burek, Ana Strat, Stephen Pirpinias, Ezekiell Mouzon, Ming-Hu Han, Rachael L Neve, Rosemary C Bagot, Andrew Kasarskis, Ja Wook Koo, Eric J Nestler
Differential gene expression in nucleus accumbens somatostatin interneurons_cocaine_mice_pvalue
Description:
To characterize transcriptional alterations that cocaine induces in these cells, we perform cell type-specific RNA-sequencing on FACS-isolated nuclei of somatostatin interneurons and identified 1100 DETs enriched for processes related to neural plasticity. To profile the entire (non poly-A selected) transcriptome of NAc somatostatin interneurons, we generated a transgenic reporter line (SST-TLG498 mice) to label the nuclei of these cells with a modified form of EGFP that is retained in the nuclear membrane (EGFP-F)22, enabling their isolation from NAc dissections using FACS. We succeeded in FACS-isolating nuclei suitable for RNA-sequencing from individual SST-TLG498 mice. We proceeded with differential expression analysis of the RNA-sequencing data to identify differentially expressed transcripts (DETs) in NAc somatostatin interneurons in response to repeated cocaine exposure: 778 transcripts were upregulated by cocaine and 322 were downregulated.
Authors:
Efrain A Ribeiro, Marine Salery, Joseph R Scarpa, Erin S Calipari, Peter J Hamilton, Stacy M Ku, Hope Kronman, Immanuel Purushothaman, Barbara Juarez, Mitra Heshmati, Marie Doyle, Casey Lardner, Dominicka Burek, Ana Strat, Stephen Pirpinias, Ezekiell Mouzon, Ming-Hu Han, Rachael L Neve, Rosemary C Bagot, Andrew Kasarskis, Ja Wook Koo, Eric J Nestler
Add Selected GeneSets to Project(s)
Warning: You are not signed in. Adding these genesets to a project will create a guest account for you.
Guest accounts are temporary, and will be removed within 24 hours of creation. Guest accounts can be registered as full accounts, but you cannot associate a guest account with an existing account.
If you already have an account, you should sign into that account before proceeding.