Differentially expressed genes from RPE compared to Normal Retina
Description:
Transcriptome profiling from macular retina and RPE/choroid samples from 27 unrelated eye tissue donors, was performed using RNA-sequencing. Human donor eye collection were obtained from Utah Lions Eye Bank within a 6-hour post-mortem interval and donors aged 60-90 years. Sample types were Normal Retina, Intermediate AMD Retina, Neovascular AMD Retina, Normal macular retina pigment epithelium (RPE), Intermediate AMD RPE, and Neovascular AMD RPE. Age Related Macular Degeneration (AMD) phenotyping was determined using the Age-Related Eye Disease Study (AREDS) severity grading scale, where AREDS category 0/1 was considered normal, AREDS category 3 intermediate AMD, and AREDS category 4b neovascular AMD. Samples from Normal RPE were compared to Normal Retina, and are presented with fold change > 1.5 and and P < 0.05. This gene set was annotated from the Supplementry Table of BioRxiv pre-print paper ‘Patterns of gene expression and allele-specific expression vary among macular tissues and clinical stages of Age-related Macular Degeneration’ by Zhang et.al (2022) doi: https://doi.org/10.1101/2022.12.19.521092
Postmortem tissue samples of the dorsolateral prefrontal cortex (DLPFC) from 153 deceased individuals (Mage = 35.4; 62% male; 77% European ancestry). Study groups included 72 brain samples from individuals who died of acute opioid intoxication, 53 psychiatric controls, and 28 normal controls. Whole transcriptome RNA-sequencing was used to generate exon counts, and differential expression was tested using limma-voom. Analyses were adjusted for relevant sociodemographic characteristics, technical covariates, and cryptic relatedness using quality surrogate variables. Weighted correlation network analysis and gene set enrichment analyses also were conducted.
Authors:
David W Sosnowski, Andrew E Jaffe, Ran Tao, Amy Deep-Soboslay, Chang Shu, Sarven Sabunciyan, Joel E Kleinman, Thomas M Hyde, Brion S Maher
Postmortem tissue samples of the dorsolateral prefrontal cortex (DLPFC) from 153 deceased individuals (Mage = 35.4; 62% male; 77% European ancestry). Study groups included 72 brain samples from individuals who died of acute opioid intoxication, 53 psychiatric controls, and 28 normal controls. Whole transcriptome RNA-sequencing was used to generate exon counts, and differential expression was tested using limma-voom. Analyses were adjusted for relevant sociodemographic characteristics, technical covariates, and cryptic relatedness using quality surrogate variables. Weighted correlation network analysis and gene set enrichment analyses also were conducted.
Authors:
David W Sosnowski, Andrew E Jaffe, Ran Tao, Amy Deep-Soboslay, Chang Shu, Sarven Sabunciyan, Joel E Kleinman, Thomas M Hyde, Brion S Maher
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
Opioid_human_dorsolateral prefrontal cortex_reanalysis of Seney et al 2021_log2FC
Description:
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
Opioid_human_dorsolateral prefrontal cortex_reanalysis of Seney et al 2021_qvalue
Description:
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
Opioid_human_dorsolateral prefrontal cortex_reanalysis of Sosnowski et al 2022_log2FC
Description:
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
Opioid_human_dorsolateral prefrontal cortex_reanalysis of Sosnowski et al 2022_qvalue
Description:
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
Neocortex Gene Expression Correlates for HARGREAVES_MEANBOTH measured in BXD RI Females & Males obtained using GeneNetwork Neocortex ILM6v1.1 (Feb08) RankInv. The HARGREAVES_MEANBOTH measures Thermal Nociception Hargreaves' Test under the domain Pain. The correlates were thresholded at a p-value of less than 0.001.
Authors:
Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Lariviere WR, Matthews DB, Mittleman G, Goldowitz D, Chesler EJ
Hippocampus Gene Expression Correlates for ACTI15_SAL measured in BXD RI Males obtained using GeneNetwork Hippocampus Consortium M430v2 (Jun06) RMA. The ACTI15_SAL measures Distance traveled (cm) during the third five minute bin after saline under the domain Ethanol. The correlates were thresholded at a p-value of less than 0.001.
Authors:
Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Lariviere WR, Matthews DB, Mittleman G, Goldowitz D, Chesler EJ
Hippocampus Gene Expression Correlates for ACTI10_SAL measured in BXD RI Males obtained using GeneNetwork Hippocampus Consortium M430v2 (Jun06) RMA. The ACTI10_SAL measures Distance traveled (cm) during the second five minute bin after saline under the domain Ethanol. The correlates were thresholded at a p-value of less than 0.001.
Authors:
Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Lariviere WR, Matthews DB, Mittleman G, Goldowitz D, Chesler EJ
Hippocampus Gene Expression Correlates for ACTI20_SAL measured in BXD RI Males obtained using GeneNetwork Hippocampus Consortium M430v2 (Jun06) RMA. The ACTI20_SAL measures Distance traveled (cm) during the fourth five minute bin after saline under the domain Ethanol. The correlates were thresholded at a p-value of less than 0.001.
Authors:
Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Lariviere WR, Matthews DB, Mittleman G, Goldowitz D, Chesler EJ
Neocortex Gene Expression Correlates for LM_BASELINE measured in BXD RI Females & Males obtained using GeneNetwork Neocortex ILM6v1.1 (Feb08) RankInv. The LM_BASELINE measures Baseline activity in fear conditioning apparatus under the domain Basal Behavior. The correlates were thresholded at a p-value of less than 0.001.
Authors:
Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Lariviere WR, Matthews DB, Mittleman G, Goldowitz D, Chesler EJ
Since HDL preparations may contain several particle subpopulations, we first ascertained that the inhibitory activity of the HDL preparation used in this study was due to apo A–I. As shown in Figure 1Figure 1, the inhibitory activity of HDL was reversed in a dose-dependent manner by antibodies to apo A–I. Antibodies to apo A–I alone did not affect IL-1β and TNF production by human monocytes. Similarly, they did not change CEsHUT-induced production of IL-1β or TNF in the absence of HDL.
Authors:
Gruaz L, Delucinge-Vivier C, Descombes P, Dayer JM, Burger D
Chronic cocaine - Cocaine-paired (conditioned place preference) vs. Control (saline or cocaine-non-paired) DNA microarray All genes on microarray presented After the pre-conditioning phase where animals were allowed access to either compartment for 15 minutes for 4 consecutive days, the conditioning phase for the cocaine-paired groups and cocaine non-paired groups began, consisting of eight subsequent daily sessions. For both groups, cocaine (10 mg / kg) or saline injections were administered on alternate days. For the cocaine-paired groups, rats were immediately placed in one of the two compartments for 30 min with the door in place restricting a z transformation followed by z test and anova followed by Student-Newman-Keuls' post hoc test. Gene expression profile was assessed 24 h after the last conditioning session that corresponded to 48 h after last cocaine exposure, when drug has been eliminated from the body and transient transcriptional changes are likely to be minimal. Therefore, changes in gene expression at this time-point are likely to reflect longer lasting adaptations that may account for maintenance of cocaine-induced memories. The complete lists of normalized gene expression values for the hippocampus of saline-treated, cocaine non-paired and cocaine-paired groups are presented. Analyses revealed that 214 transcripts were differentially regulated in the hippocampus of cocaine-paired rats vs. non-paired and saline-treated controls. Cocaine-induced conditioned place preference caused significant increases in the expression of 151 genes and caused decreases in the expression of 63 genes. (NIF Table ID 130.1 [83])
Authors:
Krasnova IN, Li SM, Wood WH, McCoy MT, Prabhu VV, Becker KG, Katz JL, Cadet JL
Chronic cocaine - Cocaine-paired (conditioned place preference) vs. Control (saline or cocaine-non-paired) DNA microarray All genes on microarray presented After the pre-conditioning phase where animals were allowed access to either compartment for 15 minutes for 4 consecutive days, the conditioning phase for the cocaine-paired groups and cocaine non-paired groups began, consisting of eight subsequent daily sessions. For both groups, cocaine (10 mg / kg) or saline injections were administered on alternate days. For the cocaine-paired groups, rats were immediately placed in one of the two compartments for 30 min with the door in place restricting a z transformation followed by z test and anova followed by Student-Newman-Keuls' post hoc test. Gene expression profile was assessed 24 h after the last conditioning session that corresponded to 48 h after last cocaine exposure, when drug has been eliminated from the body and transient transcriptional changes are likely to be minimal. Therefore, changes in gene expression at this time-point are likely to reflect longer lasting adaptations that may account for maintenance of cocaine-induced memories. The complete lists of normalized gene expression values for the frontal cortex of saline-treated, cocaine non-paired and cocaine-paired groups are presented. Differences in the expression of 39 transcripts in the frontal cortex were related to the conditioned place preference paradigm. These include increases in the level of 22 genes and decreases in 17 genes. (NIF Table ID 130.3 [83.5])
Authors:
Krasnova IN, Li SM, Wood WH, McCoy MT, Prabhu VV, Becker KG, Katz JL, Cadet JL
Genes associated with Homo sapiens that interact with the MeSH term 'Arsenic' (D001151). Incorporates data from 87 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term '5-dihydrocortisone' (C045993). Incorporates data from 1538 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term '(6-(4-(2-piperidin-1-ylethoxy)phenyl))-3-pyridin-4-ylpyrazolo(1,5-a)pyrimidine' (C516138). Incorporates data from 3 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'Amiodarone' (D000638). Incorporates data from 38 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'arsenite' (C015001). Incorporates data from 3 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'Plant Oils' (D010938). Incorporates data from 1 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'Aldehydes' (D000447). Incorporates data from 10 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Genes associated with Homo sapiens that interact with the MeSH term 'Tretinoin' (D014212). Incorporates data from 1 publications curated by the Comparative Toxicogenomics Database (CTD). ODE Gene scores represent number of supporting publications per gene.
Authors:
None
Add Selected GeneSets to Project(s)
Warning: You are not signed in. Adding these genesets to a project will create a guest account for you.
Guest accounts are temporary, and will be removed within 24 hours of creation. Guest accounts can be registered as full accounts, but you cannot associate a guest account with an existing account.
If you already have an account, you should sign into that account before proceeding.