Ethanol induced LORR Chr# 4 rs3695715 (3649824) with right flanking marker rs3663950 (135285447) and left marker rs6279100 (155557887). This was mapped in 300 + (b6x129)F2 mice.
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
Analysis using RNA-seq of FACS-purified oligodendrocytes revealed a large cohort of morphine-regulated genes. In addition, to investigate cell-type-specific opioid responses, we performed single-cell RNA sequencing (scRNA-seq) of the nucleus accumbens of mice following acute morphine treatment. Differential expression analysis uncovered unique morphine-dependent transcriptional responses by oligodendrocytes and astrocytes.
Authors:
Denis Avey, Sumithra Sankararaman, Aldrin K Y Yim, Ruteja Barve, Jeffrey Milbrandt, Robi D Mitra
Differential gene expression in nucleus accumbens somatostatin interneurons_cocaine_mice_logFC
Description:
To characterize transcriptional alterations that cocaine induces in these cells, we perform cell type-specific RNA-sequencing on FACS-isolated nuclei of somatostatin interneurons and identified 1100 DETs enriched for processes related to neural plasticity. To profile the entire (non poly-A selected) transcriptome of NAc somatostatin interneurons, we generated a transgenic reporter line (SST-TLG498 mice) to label the nuclei of these cells with a modified form of EGFP that is retained in the nuclear membrane (EGFP-F)22, enabling their isolation from NAc dissections using FACS. We succeeded in FACS-isolating nuclei suitable for RNA-sequencing from individual SST-TLG498 mice. We proceeded with differential expression analysis of the RNA-sequencing data to identify differentially expressed transcripts (DETs) in NAc somatostatin interneurons in response to repeated cocaine exposure: 778 transcripts were upregulated by cocaine and 322 were downregulated.
Authors:
Efrain A Ribeiro, Marine Salery, Joseph R Scarpa, Erin S Calipari, Peter J Hamilton, Stacy M Ku, Hope Kronman, Immanuel Purushothaman, Barbara Juarez, Mitra Heshmati, Marie Doyle, Casey Lardner, Dominicka Burek, Ana Strat, Stephen Pirpinias, Ezekiell Mouzon, Ming-Hu Han, Rachael L Neve, Rosemary C Bagot, Andrew Kasarskis, Ja Wook Koo, Eric J Nestler
DEG mouse BLA 24hr withdrawal cocaine vs saline SA_pvalue
Description:
To determine how a history of cocaine self-administration (SA) influences circuit-wide transcriptomes, RNA-seq was performed on PFC, dorsal striatum (DStr), NAc, basolateral amygdala (BLA), ventral hippocampus (vHIP), and VTA, obtained from the following six groups of male C57BL/6J mice (Figure 1A): saline SA + 24 hr withdrawal (WD) (S24, n=5–8); cocaine SA + 24 hr WD (C24, n=5–8); saline SA + 30 d WD + saline re-exposure (SS, n=5–8); saline SA + 30 d WD + cocaine exposure (SC, n=5–8); cocaine SA + 30 d WD + saline exposure (CS, n=3–7); and cocaine SA + 30 d WD + cocaine re-exposure (CC, n=5–7). Genes presensted here are from the cocaine or saline SA + 24hr withdrawal paradigm for each brain region.
Authors:
Deena M Walker, Hannah M Cates, Yong-Hwee E Loh, Immanuel Purushothaman, Aarthi Ramakrishnan, Kelly M Cahill, Casey K Lardner, Arthur Godino, Hope G Kronman, Jacqui Rabkin, Zachary S Lorsch, Philipp Mews, Marie A Doyle, Jian Feng, Benoit Labonté, Ja Wook Koo, Rosemary C Bagot, Ryan W Logan, Marianne L Seney, Erin S Calipari, Li Shen, Eric J Nestler
Add Selected GeneSets to Project(s)
Warning: You are not signed in. Adding these genesets to a project will create a guest account for you.
Guest accounts are temporary, and will be removed within 24 hours of creation. Guest accounts can be registered as full accounts, but you cannot associate a guest account with an existing account.
If you already have an account, you should sign into that account before proceeding.