Data from GEO GSE194368 and analyzed using GEO2R, only top gene shown. Authors identified transcriptional adaptations of GR signaling in the amygdala of humans with OUD. Thus, GRs, their coregulators and downstream systems may represent viable therapeutic targets to treat the “stress side” of OUD.
Authors:
Stephanie A Carmack, Janaina C M Vendruscolo, M Adrienne McGinn, Jorge Miranda-Barrientos, Vez Repunte-Canonigo, Gabriel D Bosse, Daniele Mercatelli, Federico M Giorgi, Yu Fu, Anthony J Hinrich, Francine M Jodelka, Karen Ling, Robert O Messing, Randall T Peterson, Frank Rigo, Scott Edwards, Pietro P Sanna, Marisela Morales, Michelle L Hastings, George F Koob, Leandro F Vendruscolo
Data from GEO GSE194368 and analyzed using GEO2R, only top gene shown. Authors identified transcriptional adaptations of GR signaling in the amygdala of humans with OUD. Thus, GRs, their coregulators and downstream systems may represent viable therapeutic targets to treat the “stress side” of OUD.
Authors:
Stephanie A Carmack, Janaina C M Vendruscolo, M Adrienne McGinn, Jorge Miranda-Barrientos, Vez Repunte-Canonigo, Gabriel D Bosse, Daniele Mercatelli, Federico M Giorgi, Yu Fu, Anthony J Hinrich, Francine M Jodelka, Karen Ling, Robert O Messing, Randall T Peterson, Frank Rigo, Scott Edwards, Pietro P Sanna, Marisela Morales, Michelle L Hastings, George F Koob, Leandro F Vendruscolo
Transcriptional alterations in dorsolateral prefrontal cortex and nucleus accumbens implicate neuroinflammation and synaptic remodeling in opioid use disorder. Transcriptomic profile of 20 control subjects and 20 OUD subjects in brain region DLPFC and NAC. Analyzed using GEO2R (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174409) separately for each brain region, comparing OUD and control samples.
Authors:
Xiangning Xue, Wei Zong, Jill R Glausier, Sam-Moon Kim, Micah A Shelton, BaDoi N Phan, Chaitanya Srinivasan, Andreas R Pfenning, George C Tseng, David A Lewis, Marianne L Seney, Ryan W Logan
Transcriptional alterations in dorsolateral prefrontal cortex and nucleus accumbens implicate neuroinflammation and synaptic remodeling in opioid use disorder. Transcriptomic profile of 20 control subjects and 20 OUD subjects in brain region DLPFC and NAC. Analyzed using GEO2R (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174409) separately for each brain region, comparing OUD and control samples.
Authors:
Xiangning Xue, Wei Zong, Jill R Glausier, Sam-Moon Kim, Micah A Shelton, BaDoi N Phan, Chaitanya Srinivasan, Andreas R Pfenning, George C Tseng, David A Lewis, Marianne L Seney, Ryan W Logan
Transcriptional alterations in dorsolateral prefrontal cortex and nucleus accumbens implicate neuroinflammation and synaptic remodeling in opioid use disorder. Transcriptomic profile of 20 control subjects and 20 OUD subjects in brain region DLPFC and NAC. Analyzed using GEO2R (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174409) separately for each brain region, comparing OUD and control samples.
Authors:
Xiangning Xue, Wei Zong, Jill R Glausier, Sam-Moon Kim, Micah A Shelton, BaDoi N Phan, Chaitanya Srinivasan, Andreas R Pfenning, George C Tseng, David A Lewis, Marianne L Seney, Ryan W Logan
GWAS: HIV-1 infection, HIV viral set point measurement
Description:
List of positional candidate genes after correcting for multiple testing and controlling the false discovery rate from genome wide association studies (GWAS) retrieved from the NHGRI-EBI Catalog of published genome-wide association studies (http://www.ebi.ac.uk/gwas/). The disease/trait examined in this study, as reported by the authors, was HIV-1 viral setpoint. The EFO term HIV-1 infection, HIV viral set point measurement was annotated to this set after curation by NHGRI-EBI. Intergenic SNPS were mapped to both the upstream and downstream gene. P-value uploaded. This gene set was generated using gwas2gs v. 0.1.8 and the GWAS Catalog v. 1.0.1.
Authors:
Z Wei, Y Liu, H Xu, K Tang, H Wu, L Lu, Z Wang, Z Chen, J Xu, Y Zhu, L Hu, H Shang, G Zhao, X Kong
List of positional candidate genes after correcting for multiple testing and controlling the false discovery rate from genome wide association studies (GWAS) retrieved from the NHGRI-EBI Catalog of published genome-wide association studies (http://www.ebi.ac.uk/gwas/). The disease/trait examined in this study, as reported by the authors, was Periodontitis. The EFO term periodontitis was annotated to this set after curation by NHGRI-EBI. Intergenic SNPS were mapped to both the upstream and downstream gene. P-value uploaded. This gene set was generated using gwas2gs v. 0.1.8 and the GWAS Catalog v. 1.0.1.
Authors:
S Shimizu, Y Momozawa, A Takahashi, T Nagasawa, K Ashikawa, Y Terada, Y Izumi, H Kobayashi, M Tsuji, M Kubo, Y Furuichi
List of positional candidate genes after correcting for multiple testing and controlling the false discovery rate from genome wide association studies (GWAS) retrieved from the NHGRI-EBI Catalog of published genome-wide association studies (http://www.ebi.ac.uk/gwas/). The disease/trait examined in this study, as reported by the authors, was Refractive error. The EFO term Abnormality of refraction was annotated to this set after curation by NHGRI-EBI. Intergenic SNPS were mapped to both the upstream and downstream gene. P-value uploaded. This gene set was generated using gwas2gs v. 0.1.8 and the GWAS Catalog v. 1.0.1.
Authors:
VJ Verhoeven, PG Hysi, R Wojciechowski, Q Fan, JA Guggenheim, R Höhn, S MacGregor, AW Hewitt, A Nag, CY Cheng, E Yonova-Doing, X Zhou, MK Ikram, GH Buitendijk, G McMahon, JP Kemp, BS Pourcain, CL Simpson, KM Mäkelä, T Lehtimäki, M Kähönen, AD Paterson, SM Hosseini, HS Wong, L Xu, JB Jonas, O Pärssinen, J Wedenoja, SP Yip, DW Ho, CP Pang, LJ Chen, KP Burdon, JE Craig, BE Klein, R Klein, T Haller, A Metspalu, CC Khor, ES Tai, T Aung, E Vithana, WT Tay, VA Barathi, P Chen, R Li, J Liao, Y Zheng, RT Ong, A Döring, DM Evans, NJ Timpson, AJ Verkerk, T Meitinger, O Raitakari, F Hawthorne, TD Spector, LC Karssen, M Pirastu, F Murgia, W Ang, A Mishra, GW Montgomery, CE Pennell, PM Cumberland, I Cotlarciuc, P Mitchell, JJ Wang, M Schache, S Janmahasatian, S Janmahasathian, RP Igo, JH Lass, E Chew, SK Iyengar, TG Gorgels, I Rudan, C Hayward, AF Wright, O Polasek, Z Vatavuk, JF Wilson, B Fleck, T Zeller, A Mirshahi, C Müller, AG Uitterlinden, F Rivadeneira, JR Vingerling, A Hofman, BA Oostra, N Amin, AA Bergen, YY Teo, JS Rahi, V Vitart, C Williams, PN Baird, TY Wong, K Oexle, N Pfeiffer, DA Mackey, TL Young, CM van Duijn, SM Saw, JE Bailey-Wilson, D Stambolian, CC Klaver, CJ Hammond
Postmortem human brain tissue from the putamen region of a total of 48 individuals with Alcohol Use Disorder (AUD) and 51 control individuals were taken and RNA extracted from frozen tissue. Sequencing was carried out using the NovaSeq 6000 (Illumina) platform, and gene expression analysis was carried out with respect to AUD and control samples. Gene symbols from Entrez ids are used and Logbase2 FC as provided by the authors are annotated.
Authors:
Lea Zillich, Eric Poisel, Josef Frank, Jerome C Foo, Marion M Friske, Fabian Streit, Lea Sirignano, Stefanie Heilmann-Heimbach, André Heimbach, Per Hoffmann, Franziska Degenhardt, Anita C Hansson, Georgy Bakalkin, Markus M Nöthen, Marcella Rietschel, Rainer Spanagel, Stephanie H Witt
Postmortem human brain tissue from the ventral striatum from postmortem human brain tissue with Alcohol Use Disorder (AUD) region of a total of 48 individuals with Alcohol Use Disorder (AUD) and 51 control individuals were taken and RNA extracted from frozen tissue. Sequencing was carried out using the NovaSeq 6000 (Illumina) platform, and gene expression analysis was carried out with respect to AUD and control samples. Gene symbols from Entrez ids are used and Logbase2 FC as provided by the authors are annotated.
Authors:
Lea Zillich, Eric Poisel, Josef Frank, Jerome C Foo, Marion M Friske, Fabian Streit, Lea Sirignano, Stefanie Heilmann-Heimbach, André Heimbach, Per Hoffmann, Franziska Degenhardt, Anita C Hansson, Georgy Bakalkin, Markus M Nöthen, Marcella Rietschel, Rainer Spanagel, Stephanie H Witt
The dataset used in this study (Bulk RNA-Seq) was previously published and can be found at NCBI GEO (GSE182321), this analysis was conducted by GEO2R to compare control and OUD samples, only top differentially expressed genes are reported. To understand mechanisms and identify potential targets for intervention in the current crisis of opioid use disorder (OUD), postmortem brains represent an under-utilized resource. To refine previously reported gene signatures of neurobiological alterations in OUD from the dorsolateral prefrontal cortex (Brodmann Area 9, BA9), we explored the role of microRNAs (miRNA) as powerful epigenetic regulators of gene function.
The dataset used in this study (Bulk RNA-Seq) was previously published and can be found at NCBI GEO (GSE182321), this analysis was conducted by GEO2R to compare control and OUD samples, only top differentially expressed genes are reported. To understand mechanisms and identify potential targets for intervention in the current crisis of opioid use disorder (OUD), postmortem brains represent an under-utilized resource. To refine previously reported gene signatures of neurobiological alterations in OUD from the dorsolateral prefrontal cortex (Brodmann Area 9, BA9), we explored the role of microRNAs (miRNA) as powerful epigenetic regulators of gene function.
Opioid controls_human_ dorsolateral prefrontal cortex and nucleus accumbens_coefficient
Description:
RNA sequencing on the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc) from unaffected comparison subjects (n = 20) and subjects diagnosed with opioid use disorder OUD (n = 20). Transcriptomic analyses identified differentially expressed transcripts and investigated the transcriptional coherence between brain regions using rank-rank hypergeometric orderlap.transcriptional differences by brain region in unaffected comparison subjects, finding unique transcriptional profiles in the DLPFC and NAc
Authors:
Marianne L Seney, Sam-Moon Kim, Jill R Glausier, Mariah A Hildebrand, Xiangning Xue, Wei Zong, Jiebiao Wang, Micah A Shelton, BaDoi N Phan, Chaitanya Srinivasan, Andreas R Pfenning, George C Tseng, David A Lewis, Zachary Freyberg, Ryan W Logan
Opioid controls_human_ dorsolateral prefrontal cortex and nucleus accumbens_qvalue
Description:
RNA sequencing on the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc) from unaffected comparison subjects (n = 20) and subjects diagnosed with opioid use disorder OUD (n = 20). Transcriptomic analyses identified differentially expressed transcripts and investigated the transcriptional coherence between brain regions using rank-rank hypergeometric orderlap.transcriptional differences by brain region in unaffected comparison subjects, finding unique transcriptional profiles in the DLPFC and NAc
Authors:
Marianne L Seney, Sam-Moon Kim, Jill R Glausier, Mariah A Hildebrand, Xiangning Xue, Wei Zong, Jiebiao Wang, Micah A Shelton, BaDoi N Phan, Chaitanya Srinivasan, Andreas R Pfenning, George C Tseng, David A Lewis, Zachary Freyberg, Ryan W Logan
Opioid use disorder_human_dorsolateral prefrontal cortex_coefficient
Description:
RNA sequencing on the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc) from unaffected comparison subjects (n = 20) and subjects diagnosed with opioid use disorder OUD (n = 20). Transcriptomic analyses identified differentially expressed transcripts and investigated the transcriptional coherence between brain regions using rank-rank hypergeometric orderlap.transcriptional differences by brain region in unaffected comparison subjects, finding unique transcriptional profiles in the DLPFC and NAc
Authors:
Marianne L Seney, Sam-Moon Kim, Jill R Glausier, Mariah A Hildebrand, Xiangning Xue, Wei Zong, Jiebiao Wang, Micah A Shelton, BaDoi N Phan, Chaitanya Srinivasan, Andreas R Pfenning, George C Tseng, David A Lewis, Zachary Freyberg, Ryan W Logan
Opioid use disorder_human_nucleus accumbens_coefficient
Description:
RNA sequencing on the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc) from unaffected comparison subjects (n = 20) and subjects diagnosed with opioid use disorder OUD (n = 20). Transcriptomic analyses identified differentially expressed transcripts and investigated the transcriptional coherence between brain regions using rank-rank hypergeometric orderlap.transcriptional differences by brain region in unaffected comparison subjects, finding unique transcriptional profiles in the DLPFC and NAc
Authors:
Marianne L Seney, Sam-Moon Kim, Jill R Glausier, Mariah A Hildebrand, Xiangning Xue, Wei Zong, Jiebiao Wang, Micah A Shelton, BaDoi N Phan, Chaitanya Srinivasan, Andreas R Pfenning, George C Tseng, David A Lewis, Zachary Freyberg, Ryan W Logan
Opioid_human_dorsolateral prefrontal cortex_reanalysis of Corradin et al. 2022_log2FC
Description:
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
Opioid_human_dorsolateral prefrontal cortex_reanalysis of Corradin et al. 2022_qvalue
Description:
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
Opioid_human_dorsolateral prefrontal cortex_reanalysis of Mendez et al 2021_log2FC
Description:
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
Opioid_human_dorsolateral prefrontal cortex_reanalysis of Seney et al 2021_log2FC
Description:
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
Opioid_human_dorsolateral prefrontal cortex_reanalysis of Seney et al 2021_qvalue
Description:
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
Opioid_human_dorsolateral prefrontal cortex_reanalysis of Sosnowski et al 2022_log2FC
Description:
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
Opioid_human_dorsolateral prefrontal cortex_reanalysis of Sosnowski et al 2022_qvalue
Description:
doi: https://doi.org/10.1101/2024.01.12.24301153. This study is a re-analysis of publicly available data and a meta-analysis investigating differential gene expression associated with opioid use disorder from Corradin et al. 2022 (PMID: 35301427); Mendez et al. 2021 (PMID: 34385598); Seney et al. 2021 (PMID: 34380600); and Sosnowski et al. 2022 (PMID:36845993 ). All four of these studies used human postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying from OOD through toxicology assays administered by forensic scientists and phenotypic evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals who died from non–drug use causes.
Human - Nicotine dependence genes found in GWAS (PMID: 19009022)
Description:
Genome-wide association studies are conducted of two human cohorts, one group demonstrating nicotine dependence and another successfully quitting smoking. Study shows that some genetic components associated with the ability to quit overlap while many do not overlap. To perform the study, DNA samples were obtained from NIH volunteers and the allelic frequencies of the samples were analyzed using Affymetrix array analysis. This gene set comprises 290 genes associated with nicotine dependence.
Authors:
Drgon T, Montoya I, Johnson C, Liu QR, Walther D, Hamer D, Uhl GR
Add Selected GeneSets to Project(s)
Warning: You are not signed in. Adding these genesets to a project will create a guest account for you.
Guest accounts are temporary, and will be removed within 24 hours of creation. Guest accounts can be registered as full accounts, but you cannot associate a guest account with an existing account.
If you already have an account, you should sign into that account before proceeding.