QTL for high-dose ethanol actions on Chr2 at D2Mit21 (159.38 Mbp , Build 37)
Description:
high-dose ethanol actions spans 134.38 - 184.38 Mbp (NCBI Build 37) on Chr2. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
Authors:
Erwin VG, Markel PD, Johnson TE, Gehle VM, Jones BC
QTL for METH responses for climbing on Chr2 at D2Mc1 (162.34 Mbp , Build 37)
Description:
METH responses for climbing spans 137.34 - 187.34 Mbp (NCBI Build 37) on Chr2. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
QTL for nicotine sensitivity on Chr2 at D2Mit311 (162.39 Mbp , Build 37)
Description:
nicotine sensitivity spans 137.39 - 187.39 Mbp (NCBI Build 37) on Chr2. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
QTL for alcohol consumption on Chr2 at D2Mit148 (183.66 Mbp , Build 37)
Description:
alcohol consumption spans 158.66 - 208.66 Mbp (NCBI Build 37) on Chr2. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
Authors:
Vadasz C, Saito M, Gyetvai B, Mikics E, Vadasz C 2nd
QTL for alcohol preference locus on Chr2 at D2Mit74 (187.16 Mbp , Build 37)
Description:
alcohol preference locus spans 162.16 - 212.16 Mbp (NCBI Build 37) on Chr2. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
QTL for alcohol consumption on Chr2 at D2Mit74 (187.16 Mbp , Build 37)
Description:
alcohol consumption spans 162.16 - 212.16 Mbp (NCBI Build 37) on Chr2. This interval was obtained by using an interval width of 25 Mbp around the peak marker (Build 37, MGI, http://informatics.jax.org).
Authors:
Vadasz C, Saito M, Gyetvai B, Mikics E, Vadasz C 2nd
Ethanol induced LORR Chr# 2 rs13476399(28144658) with right flanking marker rs3713997(3151175) and left marker rs3679483 (179861211). This was mapped in 300 + (b6x129)F2 mice.
Transcriptomic analysis of gene expression in the nucleus accumbens somatostatin interneurons of male 8�12-week-old Sst-Cre mice or Sst-Cre x TLG498 (SST-TLG498) mice following repeated cocaine intake. Expression was measured via RNA-seq. Values presented are p-values. Data taken from Supplementary Data 1. Data can be accessed at GEO with accession number: GSE116484.A7
Authors:
Efrain A Ribeiro, Marine Salery, Joseph R Scarpa, Erin S Calipari, Peter J Hamilton, Stacy M Ku, Hope Kronman, Immanuel Purushothaman, Barbara Juarez, Mitra Heshmati, Marie Doyle, Casey Lardner, Dominicka Burek, Ana Strat, Stephen Pirpinias, Ezekiell Mouzon, Ming-Hu Han, Rachael L Neve, Rosemary C Bagot, Andrew Kasarskis, Ja Wook Koo, Eric J Nestler
Drug Naïve DO mice were tested for open field, light dark, hole board, novelty place preference before collecting the striatum. RNA-Seq data was analyzed with paraclique using a bicor was used with a correlation coefficient threshold of |0.5| (unsigned), minimum seed clique size of 5, minimum finished paraclique size of 10, proportional glom factor of 0.2 for paraclique construction.
We investigated the role of microglia in a mouse model of alcohol dependence using a colony stimulating factor 1 receptor inhibitor (PLX5622) to deplete microglia and a chronic intermittent ethanol vapor two-bottle choice drinking procedure. Additionally, we examined anxiety-like behavior during withdrawal. We then analyzed synaptic neuroadaptations in the central nucleus of the amygdala (CeA) and gene expression changes in the medial prefrontal cortex (mPFC) and CeA from the same animals used for behavioral studies.
Alcohol Microglia depletion in the medial prefrontal cortex q-value
Description:
dependence using a colony stimulating factor 1 receptor inhibitor (PLX5622) to deplete microglia and a chronic intermittent ethanol vapor two-bottle choice drinking procedure. Additionally, we examined anxiety-like behavior during withdrawal. We then analyzed synaptic neuroadaptations in the central nucleus of the amygdala (CeA) and gene expression changes in the medial prefrontal cortex (mPFC) and CeA from the same animals used for behavioral studies.
Alcohol dependence in the medial prefrontal cortex logFC
Description:
We investigated the role of microglia in a mouse model of alcohol dependence using a colony stimulating factor 1 receptor inhibitor (PLX5622) to deplete microglia and a chronic intermittent ethanol vapor two-bottle choice drinking procedure. Additionally, we examined anxiety-like behavior during withdrawal. We then analyzed synaptic neuroadaptations in the central nucleus of the amygdala (CeA) and gene expression changes in the medial prefrontal cortex (mPFC) and CeA from the same animals used for behavioral studies.
Alcohol interaction of dependence and MG depletion the medial prefrontal cortex logFC
Description:
We investigated the role of microglia in a mouse model of alcohol dependence using a colony stimulating factor 1 receptor inhibitor (PLX5622) to deplete microglia and a chronic intermittent ethanol vapor two-bottle choice drinking procedure. Additionally, we examined anxiety-like behavior during withdrawal. We then analyzed synaptic neuroadaptations in the central nucleus of the amygdala (CeA) and gene expression changes in the medial prefrontal cortex (mPFC) and CeA from the same animals used for behavioral studies.
Alcohol transcriptome changes in mice microglia log2FC
Description:
Microglia are fundamentally important immune cells within the central nervous system (CNS) that respond to environmental challenges to maintain normal physiological processes. Alterations in steady-state cellular function and over-activation of microglia can facilitate the initiation and progression of neuropathological conditions such as Alzheimer’s disease, Multiple Sclerosis, and Major Depressive Disorder. Alcohol consumption disrupts signaling pathways including both innate and adaptive immune responses that are necessary for CNS homeostasis. Coordinate expression of these genes is not ascertained from an admixture of CNS cell-types, underscoring the importance of examining isolated cellular populations to reveal systematic gene expression changes arising from mature microglia. Unbiased RNA-Seq profiling was used to identify gene expression changes in isolated prefrontal cortical microglia in response to recurring bouts of voluntary alcohol drinking behavior. The voluntary ethanol paradigm utilizes long-term consumption ethanol that results in escalated alcohol intake and altered cortical plasticity that is seen in humans. Gene coexpression analysis identified a coordinately regulated group of genes, unique to microglia, that collectively are associated with alcohol consumption. Genes within this group are involved in toll-like receptor signaling and transforming growth factor beta signaling. Network connectivity of this group identified Siglech as a putative hub gene and highlighted the potential importance of proteases in the microglial response to chronic ethanol. In conclusion, we identified a distinctive microglial gene expression signature for neuroimmune responses related to alcohol consumption that provides valuable insight into microglia-specific changes underlying the development of substance abuse, and possibly other CNS disorders.
Authors:
Gizelle M McCarthy, Sean P Farris, Yuri A Blednov, R Adron Harris, R Dayne Mayfield
Alcohol transcriptome changes in mice microglia total homogenate log2FC
Description:
Microglia are fundamentally important immune cells within the central nervous system (CNS) that respond to environmental challenges to maintain normal physiological processes. Alterations in steady-state cellular function and over-activation of microglia can facilitate the initiation and progression of neuropathological conditions such as Alzheimer’s disease, Multiple Sclerosis, and Major Depressive Disorder. Alcohol consumption disrupts signaling pathways including both innate and adaptive immune responses that are necessary for CNS homeostasis. Coordinate expression of these genes is not ascertained from an admixture of CNS cell-types, underscoring the importance of examining isolated cellular populations to reveal systematic gene expression changes arising from mature microglia. Unbiased RNA-Seq profiling was used to identify gene expression changes in isolated prefrontal cortical microglia in response to recurring bouts of voluntary alcohol drinking behavior. The voluntary ethanol paradigm utilizes long-term consumption ethanol that results in escalated alcohol intake and altered cortical plasticity that is seen in humans. Gene coexpression analysis identified a coordinately regulated group of genes, unique to microglia, that collectively are associated with alcohol consumption. Genes within this group are involved in toll-like receptor signaling and transforming growth factor beta signaling. Network connectivity of this group identified Siglech as a putative hub gene and highlighted the potential importance of proteases in the microglial response to chronic ethanol. In conclusion, we identified a distinctive microglial gene expression signature for neuroimmune responses related to alcohol consumption that provides valuable insight into microglia-specific changes underlying the development of substance abuse, and possibly other CNS disorders.
Authors:
Gizelle M McCarthy, Sean P Farris, Yuri A Blednov, R Adron Harris, R Dayne Mayfield
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains.
Authors:
Samuel J Harp, Mariangela Martini, Will Rosenow, Larry D Mesner, Hugh Johnson, Charles R Farber, Emilie F Rissman
Differential gene expression in nucleus accumbens somatostatin interneurons_cocaine_mice_logFC
Description:
To characterize transcriptional alterations that cocaine induces in these cells, we perform cell type-specific RNA-sequencing on FACS-isolated nuclei of somatostatin interneurons and identified 1100 DETs enriched for processes related to neural plasticity. To profile the entire (non poly-A selected) transcriptome of NAc somatostatin interneurons, we generated a transgenic reporter line (SST-TLG498 mice) to label the nuclei of these cells with a modified form of EGFP that is retained in the nuclear membrane (EGFP-F)22, enabling their isolation from NAc dissections using FACS. We succeeded in FACS-isolating nuclei suitable for RNA-sequencing from individual SST-TLG498 mice. We proceeded with differential expression analysis of the RNA-sequencing data to identify differentially expressed transcripts (DETs) in NAc somatostatin interneurons in response to repeated cocaine exposure: 778 transcripts were upregulated by cocaine and 322 were downregulated.
Authors:
Efrain A Ribeiro, Marine Salery, Joseph R Scarpa, Erin S Calipari, Peter J Hamilton, Stacy M Ku, Hope Kronman, Immanuel Purushothaman, Barbara Juarez, Mitra Heshmati, Marie Doyle, Casey Lardner, Dominicka Burek, Ana Strat, Stephen Pirpinias, Ezekiell Mouzon, Ming-Hu Han, Rachael L Neve, Rosemary C Bagot, Andrew Kasarskis, Ja Wook Koo, Eric J Nestler
Differential gene expression in nucleus accumbens somatostatin interneurons_cocaine_mice_pvalue
Description:
To characterize transcriptional alterations that cocaine induces in these cells, we perform cell type-specific RNA-sequencing on FACS-isolated nuclei of somatostatin interneurons and identified 1100 DETs enriched for processes related to neural plasticity. To profile the entire (non poly-A selected) transcriptome of NAc somatostatin interneurons, we generated a transgenic reporter line (SST-TLG498 mice) to label the nuclei of these cells with a modified form of EGFP that is retained in the nuclear membrane (EGFP-F)22, enabling their isolation from NAc dissections using FACS. We succeeded in FACS-isolating nuclei suitable for RNA-sequencing from individual SST-TLG498 mice. We proceeded with differential expression analysis of the RNA-sequencing data to identify differentially expressed transcripts (DETs) in NAc somatostatin interneurons in response to repeated cocaine exposure: 778 transcripts were upregulated by cocaine and 322 were downregulated.
Authors:
Efrain A Ribeiro, Marine Salery, Joseph R Scarpa, Erin S Calipari, Peter J Hamilton, Stacy M Ku, Hope Kronman, Immanuel Purushothaman, Barbara Juarez, Mitra Heshmati, Marie Doyle, Casey Lardner, Dominicka Burek, Ana Strat, Stephen Pirpinias, Ezekiell Mouzon, Ming-Hu Han, Rachael L Neve, Rosemary C Bagot, Andrew Kasarskis, Ja Wook Koo, Eric J Nestler
Differential gene expression in the nucleus accumbens of WT vs SERT Met172 mice after chronic cocaine treatment_logFC
Description:
To elucidate 5-HT transporter (SERT)-specific contributions to cocaine action, we evaluated cocaine effects in the SERT Met172 knock-in mouse, which expresses a SERT coding substitution that eliminates high-affinity cocaine recognition. We measured the effects of SERT Met172 on cocaine antagonism of 5-HT re-uptake using ex vivo synaptosome preparations and in vivo microdialysis. We assessed SERT dependence of cocaine actions behaviourally through acute and chronic locomotor activation, sensitization, conditioned place preference (CPP) and oral cocaine consumption.
Authors:
Linda D Simmler, Allison M J Anacker, Michael H Levin, Nina M Vaswani, Paul J Gresch, Alex G Nackenoff, Noelle C Anastasio, Sonja J Stutz, Kathryn A Cunningham, Jing Wang, Bing Zhang, L Keith Henry, Adele Stewart, Jeremy Veenstra-VanderWeele, Randy D Blakely
Differential gene expression in the nucleus accumbens of WT vs SERT Met172 mice after chronic cocaine treatment_FDR
Description:
To elucidate 5-HT transporter (SERT)-specific contributions to cocaine action, we evaluated cocaine effects in the SERT Met172 knock-in mouse, which expresses a SERT coding substitution that eliminates high-affinity cocaine recognition. We measured the effects of SERT Met172 on cocaine antagonism of 5-HT re-uptake using ex vivo synaptosome preparations and in vivo microdialysis. We assessed SERT dependence of cocaine actions behaviourally through acute and chronic locomotor activation, sensitization, conditioned place preference (CPP) and oral cocaine consumption.
Authors:
Linda D Simmler, Allison M J Anacker, Michael H Levin, Nina M Vaswani, Paul J Gresch, Alex G Nackenoff, Noelle C Anastasio, Sonja J Stutz, Kathryn A Cunningham, Jing Wang, Bing Zhang, L Keith Henry, Adele Stewart, Jeremy Veenstra-VanderWeele, Randy D Blakely
Add Selected GeneSets to Project(s)
Warning: You are not signed in. Adding these genesets to a project will create a guest account for you.
Guest accounts are temporary, and will be removed within 24 hours of creation. Guest accounts can be registered as full accounts, but you cannot associate a guest account with an existing account.
If you already have an account, you should sign into that account before proceeding.